Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Diabetes Res ; 2021: 4632745, 2021.
Article in English | MEDLINE | ID: covidwho-1556856

ABSTRACT

Gestational diabetes mellitus (GDM) is a common pregnancy complication which is normally diagnosed in the second trimester of gestation. With an increasing incidence, GDM poses a significant threat to maternal and offspring health. Therefore, we need a deeper understanding of GDM pathophysiology and novel investigation on the diagnosis and treatment for GDM. MicroRNAs (miRNAs), a class of endogenic small noncoding RNAs with a length of approximately 19-24 nucleotides, have been reported to exert their function in gene expression by binding to proteins or being enclosed in membranous vesicles, such as exosomes. Studies have investigated the roles of miRNAs in the pathophysiological mechanism of GDM and their potential as noninvasive biological candidates for the management of GDM, including diagnosis and treatment. This review is aimed at summarizing the pathophysiological significance of miRNAs in GDM development and their potential function in GDM clinical diagnosis and therapeutic approach. In this review, we summarized an integrated expressional profile and the pathophysiological significance of placental exosomes and associated miRNAs, as well as other plasma miRNAs such as exo-AT. Furthermore, we also discussed the practical application of exosomes in GDM postpartum outcomes and the potential function of several miRNAs as therapeutic target in the GDM pathological pathway, thus providing a novel clinical insight of these biological signatures into GDM therapeutic approach.


Subject(s)
Diabetes, Gestational/drug therapy , MicroRNAs/pharmacology , Adult , Diabetes, Gestational/genetics , Exosomes/metabolism , Female , Gene Expression/genetics , Gene Expression/physiology , Humans , MicroRNAs/metabolism , MicroRNAs/therapeutic use , Pregnancy
2.
J Phys Chem Lett ; 11(16): 6655-6663, 2020 Aug 20.
Article in English | MEDLINE | ID: covidwho-678528

ABSTRACT

The COVID-19 pandemic is an urgent global health emergency, and the presence of Furin site in the SARS-CoV-2 spike glycoprotein alters virulence and warrants further molecular, structural, and biophysical studies. Here we report the structure of Furin in complex with SARS-CoV-2 spike glycoprotein, demonstrating how Furin binds to the S1/S2 region of spike glycoprotein and eventually cleaves the viral protein using experimental functional studies, molecular dynamics, and docking. The structural studies underline the mechanism and mode of action of Furin, which is a key process in host cell entry and a hallmark of enhanced virulence. Our whole-exome sequencing analysis shows the genetic variants/alleles in Furin were found to alter the binding affinity for viral spike glycoprotein and could vary in infectivity in humans. Unravelling the mechanisms of Furin action, binding dynamics, and the genetic variants opens the growing arena of bona fide antibodies and development of potential therapeutics targeting the blockage of Furin cleavage.


Subject(s)
Betacoronavirus/chemistry , Furin/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virulence/physiology , Amino Acid Sequence , Animals , Betacoronavirus/pathogenicity , CHO Cells , Catalytic Domain , Cricetulus , Furin/chemistry , Furin/genetics , Gene Expression/physiology , Hexosamines/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Proteolysis , SARS-CoV-2 , Serine Proteinase Inhibitors/metabolism , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL